

REDUCING RELIANCE ON WILD FISH AND OTHER NATURAL RESOURCES FOR SALMON FEEDS SOURCING NUTRIENTS FROM UNDERUTILIZED RAW MATERIAL CATEGORIES

JESSE TRUSHENSKI, PhD LEAD, R&D NORTH AMERICA

Presentert av:

CARL-ERIK ARNESEN
Utviklingsdirektør STIM AS
Styreleder og CEO POLARFEED AS

INTRODUCTION

CURRENT NEEDS IN SALMON NUTRITION

Industry continues to rely on fish meal and fish oil as key ingredients

Marine ingredient pricing is volatile, but generally increasing—this continues to incentivize the search for alternatives

Considerations related to the use of alternative ingredients

Effects on performance and product quality (e.g., survival and growth rates, nutritional value of farmed salmon)

Environmental implications (e.g., conversion of natural habitat to agricultural production, diet digestibility and nutrient retention rates)

By controlling costs where we can, we can make room for other improvements and offer innovation to support salmon aquaculture

COMMON INGREDIENTS

PROS & CONS OF TRADITIONAL SALMONID FEED INGREDIENTS

MARINE PROTEINS & LIPIDS

PLANT PROTEINS & LIPIDS

ANIMAL PROTEINS & LIPIDS

Nutrient-dense, highly digestible

Amino acid and fatty acid profiles match unique demands of carnivorous fish

High cost, concerns related to sustainability and wild fish inputs

Lower nutrient density and digestibility, antinutritional factors

Essential amino and fatty acids are limiting or completely absent

Concerns related to agricultural practices, genetic engineering, processing costs, etc.

Nutrient-dense, highly digestible

Competitive pricing

Regulatory limitations, concerns related to product safety, market access and consumer acceptability

NOVEL INGREDIENTS

PROS & CONS OF EMERGING SALMONID FEED INGREDIENTS

INSECT PROTEINS & LIPIDS

ALGAL PROTEINS & LIPIDS

Nutrient-dense, high digestibility and palatability

Concerns related to cost, scalability, potential for contamination (filter-feeders)

Defer or redirect concerns, but do not resolve issues related to sustainability and wild fish inputs Lower nutrient density and digestibility, composition varies with feedstocks used, but largely mirrors terrestrial ingredients

Concerns related to cost, scalability, siting of insect propagation facilities

Regulatory limitations

Nutrient density varies among algal species

Limited protein digestibility, unless processed extensively

Concerns related to cost, scalability, effect on product quality (can impart a 'fishy' taste)

ATTRIBUTES TO CONSIDER

IMAGINING THE IDEAL ALTERNATIVE INGREDIENT

Composition & practical feeding value

Protein content and quality
Carbohydrate content and type
Digestibility/availability of all nutrients
Presence of antinutritional factors and/or pigments

Economic & environmental costs

Production volumes and availability
Cost-effectiveness
Environmental impacts of production and sustainability

Influence on product quality

Nutritional value, appearance, and taste of farmed fish Contaminant levels and safety

Market considerations

Public perception, traceability, other end users/demand

THERE ARE MANY, MANY INGREDIENTS THAT CAN SATISFY THE BIOLOGICAL NEEDS OF SALMON

THE GREATEST LIMITING FACTORS ARE COST, PRODUCTION VOLUMES SCALABILITY, ETC.

EMERGING INGREDIENTS SHOULD BE FOSTERED TO OVERCOME LOGISTICAL CONSTRAINTS, BUT

DELIVERING BETTER NUTRITION NOW REQUIRES PRAGMATISM

AND A FOCUS ON PRACTICALITIES

OPTIMAL NUTRITION

GROWTH ISN'T THE ONLY THING THAT MATTERS

CORN AS AN ALTERNATIVE PROTEIN SOURCE

STRATEGIES TO IMPROVE NUTRITIONAL VALUE & COST-EFFECTIVENESS

Nutrient (% DM)	Corn	Fish Meal
Protein	8.8	65.4
Lysine	0.3	5.5
Methionine	0.2	2.1
Tryptophan	0.1	0.8
Threonine	0.3	3.1
Isoleucine	0.3	3.3
Leucine	1.1	5.4
Phenylalanine	0.4	2.9
Valine	0.4	3.8
Histidine	0.3	1.7
Arginine	0.4	4.0
Starch	61.6	<1.0
Fiber	10.0	1.0
Ash	1.2	14.3
Lipid	3.8	7.6

DESPITE LOW PRICING AND WIDESPREAD AVAILABILITY, CORN IS NOT A COMMON INGREDIENT IN SALMONID FEEDS BECAUSE OF ITS LOW PROTEIN CONTENT, HIGH STARCH CONTENT, AND UNBALANCED AMINO ACID PROFILE

CORN IS ONE OF THE MOST WIDELY CULTIVATED CROPS IN THE MIDWESTERN USA

CORN PRODUCTION IS INCREASING,
BUT THE USA AGRICULTURAL
FOOTPRINT IS NOT EXPANDING

INCREASING ANNUAL PRODUCTIVITY
IS DRIVEN BY IMPROVEMENTS IN
YIELD AND CONVERSION OF OTHER
CROPLANDS TO CORN PRODUCTION

US planted acres

The increase in acreage used for corn is a result of its increasing profitability. As ethanol use continues to expand, farmers have shifted crop plantings from soybeans to corn.

Corn yield per acre

Genetic engineering is touted to increase crop yields. However, yield data does not mirror the implementation rate GE corn.

USA CORN PRODUCTION

347 MMT

White corn is a small fraction of USA annual production, but its share is growing and already exceeds 2 MMT per year

YELLOW CORN IS THE MOST WIDELY CULTIVATED TYPE OF CORN, BUT LOW-CAROTENOID, WHITE VARIETIES ARE ALSO PRODUCED

THE MAJORITY OF CORN PRODUCED
IN THE USA IS GENETICALLY
MODIFIED, BUT CONVENTIONAL
LINES ARE STILL IN PRODUCTION

Genetic engineering

In 2013, genetically engineered corn accounted for 90% of the planted crop showing a steep increase from just 25% in 2000. The majority of the current crop is known as stacked gene, meaning that it is both insect resistant and herbicide tolerant.

CORN-ETHANOL COPRODUCTS

FERMENTATION CONCENTRATES PROTEIN, REDUCES ANTINUTRIENTS

GREEN PLAINS LLC

MAKER OF MSC™ AND OTHER FERMENTED CORN DERIVATIVES

Nutrient (% DM)	Corn	MSC™ 50
Protein	8.8	49.0
Lysine	0.3	2.1
Methionine	0.2	1.1
Tryptophan	0.1	0.5
Threonine	0.3	2.1
Isoleucine	0.3	2.1
Leucine	1.1	5.9
Phenylalanine	0.4	2.6
Valine	0.4	2.7
Histidine	0.3	1.4
Arginine	0.4	2.5
Starch	61.6	4.4
Fiber	10.0	16
Ash	1.2	4.8
Lipid	3.8	2.0

GREEN PLAINS LLC IS ONE OF THE LARGEST BIOFUELS PLATFORMS IN THE WORLD

RECOGNIZING THE POTENTIAL OF THEIR
PROCESS TO PRODUCE HIGH QUALITY
FEEDSTUFFS, THEY ARE INCREASINGLY
FOCUSED ON IMPROVING THE QUALITY OF
CORN-DERIVED PROTEINS FOR THE
AQUACULTURE INDUSTRY

PROPRIETARY TECHNOLOGY IMPROVES UPON FERMENTATION TO FURTHER REFINE RESIDUAL CORN AND YEAST PROTEIN FOR AQUAFEED

Results to-date indicate MSC 50 can be incorporated at 15% of the diet, replacing costly fish meal and plant protein concentrates

SUNFLOWER AS AN ALTERNATIVE LIPID SOURCE

STRATEGIES TO REDUCE FISH OIL USE WHILE MAINTAINING PRODUCT VALUE

FISH OIL ALTERNATIVES

LIPIDS VARY IN THEIR FATTY ACID SIGNATURE AND NUTRITIONAL VALUE

SALMONIDS GENERALLY ACCEPT A WIDE RANGE OF LIPID SOURCES

SO LONG AS ESSENTIAL FATTY
ACID REQUIREMENTS ARE MET,
GROWTH PERFORMANCE IS
TYPICALLY MAINTAINED

HOWEVER, CHANGES IN DIETARY
COMPOSITION ARE GENERALLY
REFLECTED IN THE FILLETS,
WHEREBY REDUCED DIETARY FISH
OIL TRANSLATES INTO THE LOSS
OF BENEFICIAL OMEGA-3 CONTENT

DIETARY FATTY ACID PROFILES
ARE GENERALLY REFLECTED
IN THE EDIBLE TISSUES

LESS FISH OIL IN THE FEED USUALLY MEANS LESS NUTRITIONAL VALUE FOR THE CONSUMER

FEEDING C₁₈ PUFA vs. SFA & MUFA

DISRUPTING THE 'FISH ARE WHAT THEY EAT' PARADIGM

THE SPARING EFFECT OF SFA & MUFA

Previous research has revealed counter-intuitive effects of diets rich in saturated (SFA) and monounsaturated fatty acids (MUFA)

Unlike other fatty acids, SFA are not proportionately reflected in the tissues

Fish were fed diets containing fish oil, or graded levels of standard C₁₈ PUFA-rich oil or hydrogenated SFA-rich oil

25% C₁₈ PUFA OIL 50% C₁₈ PUFA OIL

75% C₁₈ PUFA OIL 100% C₁₈ PUFA OIL

25% SFA OIL

50% SFA OIL 75% SFA OIL 100% SFA OIL

100% FISH OIL

DOI: 10.1080/15222055.2012.720650

FEEDING C₁₈ PUFA vs. SFA & MUFA

DISRUPTING THE 'FISH ARE WHAT THEY EAT' PARADIGM

THE SPARING EFFECT OF SFA & MUFA

Growth is often suppressed among fish fed high levels of C₁₈ PUFA-rich diets but not SFA or MUFA-rich diets

High dietary levels of SFA and MUFA have a disproportionately small effect on tissue composition and facilitate greater fish oil sparing

This "omega-3 sparing effect" has now been observed in many species, including salmonids

DOI: 10.1080/15222055.2012.713897

DOI: 10.1016/j.aquaculture.2015.05.041 DOI: 10.2527/jas2015-9199

DOI: 10.1080/15222055.2011.579033

DOI: 10.1080/15222055.2012.720650 DOI: 10.1007/s11745-016-4136-v

DOI: 10.1111/anu.12502

DOI: 10.1080/15222055.2013.811134

FEEDING C₁₈ PUFA vs. SFA & MUFA DISRUPTING THE 'FISH ARE WHAT THEY EAT' PARADIGM

Dramatic fillet profile distortion among fish fed C₁₈ PUFA-rich diets

FEEDING C₁₈ PUFA vs. SFA & MUFA

DISRUPTING THE 'FISH ARE WHAT THEY EAT' PARADIGM

North American Journal of Aquaculture

Special Section: Lipids in Aquaculture

Growth Performance and Tissue Fatty Acid Composition of Rainbow Trout Reared on Feeds Containing Fish Oil or Equal Blends of Fish Oil and Traditional or Novel Alternative Lipids

Jesse T. Trushenski & Patrick Blaufuss, Bonnie Mulligan, Jérôme Laporte

North American
Journal of Aquaculture

ARTICLE

Sparing Fish Oil with Beef Tallow in Feeds for Rainbow Trout:

Effects of Inclusion Rates and Finishing on Production

Performance and Tissue Fatty Acid Composition

Brian R. Gause. Jesse T. Trushenski 89

NUMEROUS STUDIES, INCLUDING LONG-TERM AND FARM-SCALE TRIALS DEMONSTRATE THE VALUE OF SFA- AND MUFA-RICH LIPIDS IN ATLANTIC SALMON AND RAINBOW TROUT FEEDS

SUNFLOWER

CHALLENGES & OPPORTUNITIES

FISH OIL

SUNFLOWER OIL

SUNFLOWER VS. FISH OIL PRICING (US\$/MT)

SUNFLOWER OIL PRICING
IS COMPETITIVE WITH
OTHER ALTERNATIVE
LIPIDS

PROPORTIONS OF SFA
AND MUFA TO C₁₈ PUFA
SUGGEST SUNFLOWER OIL
WOULD SUPPORT
SIGNIFICANT OMEGA-3
SPARING

CONCLUSIONS

NEXT STEPS TO ADDRESS NEEDS IN SALMON NUTRITION

The search for new feed inputs for aquaculture continues...and likely always will

Polarfeed remains committed to its philosophy of listening to the fish, delivering what they need to not just survive but thrive, and emphasizing practicality as we diversify our portfolio of ingredients

MSC-50 and sunflower oil are very promising resources, but our plans for innovation do not begin and end with these ingredients

Polarfeed has applied for research concessions to evaluate MSC-50 and sunflower oil at commercial scale in partnership with Norwegian salmon farmers

We have planned our work and now intend to work our plan. We will be assessing feed performance comprehensively, leveraging STIM's strengths in fish health and environmental services to look at the 'big picture'

We anticipate MSC-50 and sunflower oil-based feeds will be successful, and are prepared to manage the project adaptively with our partners to ensure that they are successful

Stay tuned for more information—anticipated project start date is in 2022!

