

PART I Nutritional demands are driven by fundamental biology

Trophic levels can be used to predict nutrient demands

Carnivory predicts protein demand

PROTEIN IS THE MOST EXPENSIVE MACRONUTRIENT

ADEQUATE

QUANTITY AND

QUALITY OF

PROTEIN IS

CRITICAL FOR

FAST-GROWING,

HEALTHY FISH

AVERAGE TROPHIC LEVEL

PART II The biology of carnivores is different

Effects of diabetes or glucose intolerance •

LONG-TERM
EFFECTS OF
GLUCOSE
INTOLERANCE
INCLUDE HEART,
KIDNEY, AND
LIVER FAILURE,
SLOW WOUND
HEALING AND
OTHER SKIN
PROBLEMS

Diet determines the severity of diabetic effects

Carnivorous animals are functionally 'diabetic' •

Blood Glucose (mg/dL)

CARNIVORES LIKE
SALMON AND TROUT
ARE GLUCOSE
INTOLERANT AND
SUFFER SIMILAR
EFFECTS WHEN FED
LOW PROTEIN, HIGH
ENERGY FEEDS

Feed formulations have changed

FAT HAS
INCREASED AND
PROTEIN HAS
DECREASED
DRAMATICALLY
OVER THE LAST
30 YEARS

TYPICAL SALMON AND TROUT FEEDS TODAY ARE THE OPPOSITE OF WHAT THEY SHOULD BE TO MANAGE 'DIABETES'

PART III Remembering what we have forgotten about nutrition

Nutritional demands and tolerances vary with life stage

Smaller life stages

Small fish expend more energy, have higher resting metabolic rates

Small fish must be fed more to meet bioenergetic demand for maintenance and growth

If properly fed, small fish can achieve much greater growth rates

Large fish typically accept a wider range of raw materials, are more robust to dietary imbalance

Large fish consume more feed, so the cost of inferior growth and conversion is much greater

Larger life stages

Determinate vs. indeterminate growth

ALL
TERRESTRIAL
LIVESTOCK ARE
DETERMINATE
GROWERS

AFTER SEXUAL
MATURATION
SIZE DOES NOT
INCREASE
APPRECIABLY

Determinate vs. indeterminate growth •

SALMON AND
TROUT ARE
INDETERMINATE
GROWERS
GROWTH
CONTINUES
AFTER SEXUAL

MATURATION,

BUT AT A

SLOWER, LESS

EFFICIENT RATE

Too much of a good thing—fat can limit feeding and growth

EXPERIMENTAL EVIDENCE AND ON-FARM EXPERIENCE INDICATE THAT HIGH-FAT FEEDS PRODUCE HIGH-FAT FISH AND CAN LIMIT GROWTH POTENTIAL

A few words about protein sparing

PROTEIN SPARING OCCURS, BUT ONLY AT MODEST FAT LEVELS AND FEED INTAKE IS STILL REDUCED BY INCREASING DIETARY ENERGY LEVELS

PART IV Sustainability is a concept, not an ingredient

Feed formulations have changed

USE OF MARINE
INGREDIENTS HAS
DECLINED RAPIDLY
SINCE THE 1990s

TYPICAL SALMON &
TROUT FEEDS ARE
NOW MOSTLY
PLANT-BASED

Countries vary in their approach to filling the gap

There are no perfect ingredients

MARINE INGREDIENTS

Cost, limited opportunities for increased volume

TERRESTRIAL CROPS & RELATED INGREDIENTS

Antinutritional factors, digestibility

PROCESSED ANIMAL PROTEINS & FATS

Customer perceptions, marketing opportunities

FERMENTED INGREDIENTS

Excess microbial content, marketing opportunities

INSECT MEALS, ALGAE & SINGLE-CELL PROTEINS

Cost, availability

Not all ingredients are what they seem

Plant proteins typically
have a much higher
carbon footprint than
fish meal, which has
pushed the overall
footprint of feed up
over the last 20 years

CO₂ EQUIVALENTS FRESHWATER PHOSPHORUS ARABLE LAND

SUMMARY The need for a new normal

- If we expect peak performance, we must put the fish first
- We must remember the basics of nutritional science, but recognize that fish are fundamentally different
- If we feed fish based on the assumption that they will grow more slowly, they certainly will!
- Sustainability is about using all of the resources that are available and considering both inputs <u>and</u> outputs
- Although we were the first, we are not the only ones calling for a reset in how we feed salmon and trout

Bondevennen

19 May 2023

We already have different feed alternatives, and we will need all of them in order to reach the ambitious goals set by the government

Professor Margareth Øverland Norwegian University of Life Sciences RAW MATERIALS MUST BE SUSTAINABLE,
CONTRIBUTE TO A REDUCED **CARBON FOOTPRINT**

MUST USE **ALL RESOURCES** AVAILABLE, INCLUDING ANIMAL PROTEINS AND FATS, FERMENTATION PRODUCTS, ETC.

IMPLEMENTATION WILL REQUIRE
REASSESSMENT OF REGULATORY
BARRIERS AND PERCEPTIONS

SOLUTIONS MUST BE BOLD TO AFFECT CHANGE AT THE NECESSARY SCALE

